L^p STABILITY FOR THE LINEAR WAVE EQUATION WITH LOCALIZED DAMPING

Presented by: Meryem KAFNEMER (UMA, ENSTA Paris)

Under the supervision of: Frédéric JEAN (UMA, ENSTA Paris), Yacine CHITOUR (LS2, CentraleSupélec)

Existing work about the stability of the damped wave equation with internal damping:

- Case p=2
 - "A new method to obtain decay rate estimates for dissipative systems with localized damping", Patrick Martinez (1999)
 - "Exponential stability for the wave equation with weak nonmonotone damping", Patrick Martinez, Judith Vancostenoble, (2000)

For extended references: "On Some Recent Advances on Stabilization for Hyperbolic Equations", Fatiha Alabau (2012) ■ Case p≠2

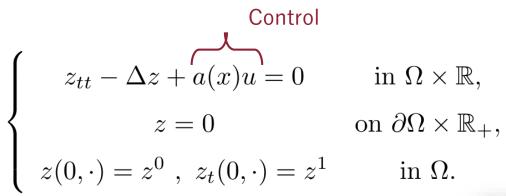
- "L^p-estimates of solutions to some nonlinear wave equations in one space dimension", Alain Haraux (2009)
- "L^p-asymptotic stability analysis of a 1D wave equation with a nonlinear damping", Yacine Chitour, Swann Marx, and Christophe Prieur (2019)

For extended references: *"L^p*-asymptotic stability of 1D damped wave equations with localized and linear damping", Meryem Kafnemer and al. (2022)

HILBERTIAN FRAMEWORK

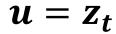
LINEAR PROBLEM

Case
$$p = 2$$
:



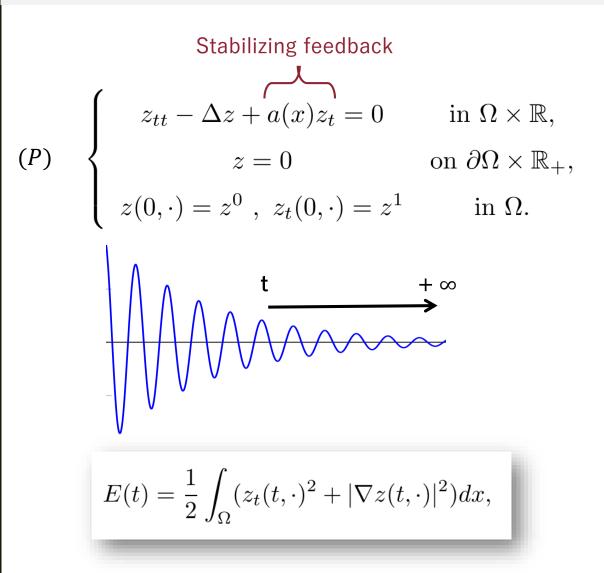
$$\begin{split} \Omega &\subset \mathbb{R}^N , \ C^2 \text{ bounded} \\ (z_0, z_1) &\in H_0^1(\Omega) \times L^2(\Omega) , \\ a &: \overline{\Omega} \to \mathbb{R} \text{ continuous function, satisfies:} \\ a(x) &\geq a_0 > 0 \text{ on } \omega \subset \Omega. \end{split}$$

In our case, *u* is a linear damping given by:





Case p = 2:



Different types of stability

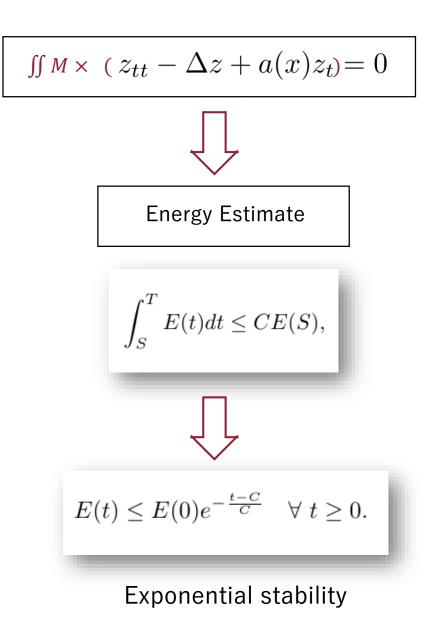
Strong stabilization: $E(t) \rightarrow 0$ when $t \rightarrow \infty$

Polynomial stability: $\exists C, \gamma > 0, E(t) \leq CE(0)t^{-\gamma}$

Exponential stability: $\exists C, \gamma > 0, E(t) \leq CE(0)e^{-\gamma t}$

To obtain exponential stability results, geometrical conditions are imposed on the damping domain ω

Multipliers method:



Using the multiplier z_t :

$$\iint z_t \times (z_{tt} - \Delta z + a(x)z_t) = 0$$

$$E'(t) = -\int a(x)z_t^2 dx$$

NON-HILBERTIAN FRAMEWORK

LINEAR PROBLEM

Haraux (2009), E_p is non-increasing with an explicit expression of E'_p along strong solutions.

Geometrical conditions:

$$\begin{cases} z_{tt} - z_{xx} + a(x)z_t = 0 & \text{for } (t, x) \in \mathbb{R}_+ \times (0, 1), \\ z(t, 0) = z(t, 1) = 0 & t \ge 0, \\ z(0, \cdot) = z_0 , \ z_t(0, \cdot) = z_1, \end{cases}$$
(1)

$$a: \overline{\Omega} \to \mathbb{R}$$
 $a \ge 0$ on $[0,1]$ and $\exists a_0 > 0, a \ge a_0$ on ω

Geometrical conditions: unnecessary

 $(\mathbf{H_1}) \ a : [0,1] \to \mathbb{R}$ is a non-negative continuous function such that $\exists a_0 > 0, \ a \ge a_0 \text{ on } \omega =]c, d[\subset [0,1],$

Well-posedness

Theorem (Well-posedness) Let $p \in [1, \infty)$. For any initial data $(z_0, z_1) \in X_p$ (resp. Y_p), there exists a unique weak (resp. strong) solution z such that $z \in L^{\infty}(\mathbb{R}_+, W_0^{1,p}(0, 1)) \cap W^{1,\infty}(\mathbb{R}_+, L^p(0, 1)),$

(resp. $z \in L^{\infty}(\mathbb{R}_+, W^{2,p}(0,1) \cap W^{1,p}_0(0,1)) \cap W^{1,\infty}(\mathbb{R}_+, W^{1,p}_0(0,1)).$)

The proof is based on D'Alembert formula and fixed point theory

Exponential stability:

Theorem 4.1 (*Exponential stability*) Fix $p \in (1, \infty)$ and suppose that Hypothesis (\mathbf{H}_1) is satisfied. Then the C^0 -semigroup $(S_p(t))_{t\geq 0}$ is exponentially stable.

$$E_p(t) = \frac{1}{p} \int_0^1 \left(|z_x + z_t|^p + |z_x - z_t|^p \right) dx$$

$$\forall \ 0 \leq S \leq T \ , \ \int_{S}^{T} E_{p}(t) \, dt \leq C \, C_{p} E_{p}(S),$$
 Energy estimate

$$\iint \mathbf{M} imes$$
 ($z_{tt} - \Delta z + a(x) z_t$) = 0

Exponential stability:

Theorem 4.1 (*Exponential stability*) Fix $p \in (1, \infty)$ and suppose that Hypothesis $(\mathbf{H_1})$ is satisfied. Then the C^0 -semigroup $(S_p(t))_{t\geq 0}$ is exponentially stable.

$$E_p(t) = \frac{1}{p} \int_0^1 \left(|z_x + z_t|^p + |z_x - z_t|^p \right) dx$$

Riemann coordinates:

$$\rho(t, x) = z_x(t, x) + z_t(t, x), \xi(t, x) = z_x(t, x) - z_t(t, x).$$

$$\begin{cases} \rho_t - \rho_x = -\frac{1}{2}a(x)(\rho - \xi) & \text{in } \mathbb{R}_+ \times (0, 1), \\ \xi_t + \xi_x = \frac{1}{2}a(x)(\rho - \xi) & \text{in } \mathbb{R}_+ \times (0, 1), \\ \rho(t, 0) - \xi(t, 0) = \rho(t, 1) - \xi(t, 1) = 0 & \forall t \in \mathbb{R}_+, \\ \rho_0 := \rho(0, .) = z'_0 + z_1, \ \xi_0 := \xi(0, .) = z'_0 - z_1, \end{cases}$$

$$E_p(t) = \frac{1}{p} \int_0^1 (|\rho|^p + |\xi|^p) dx.$$

Exponential stability:

$$\begin{cases} \rho_t - \rho_x = -\frac{1}{2}a(x)(\rho - \xi) & \text{in } \mathbb{R}_+ \times (0, 1), \\ \xi_t + \xi_x = \frac{1}{2}a(x)(\rho - \xi) & \text{in } \mathbb{R}_+ \times (0, 1), \\ \rho(t, 0) - \xi(t, 0) = \rho(t, 1) - \xi(t, 1) = 0 & \forall t \in \mathbb{R}_+, \\ \rho_0 := \rho(0, .) = z'_0 + z_1, \ \xi_0 := \xi(0, .) = z'_0 - z_1, \end{cases}$$

$$\int \int M(\rho) \times \left(\rho_t - \rho_x + \frac{1}{2}a(x)(\rho - \xi) \right) = 0$$

$$\int \int M(\xi) \times \left(\xi_t + \xi_x - \frac{1}{2}a(x)(\rho - \xi) \right) = 0$$

$$\int \int V$$

$$\forall \ 0 \le S \le T \ , \ \int_S^T E_p(t) \ dt \le C \ C_p E_p(S),$$

Case $p \ge 2$: Generalizing the multipliers

C
$$x \psi sign(\rho) |\rho|^{p-1}; x \psi sign(\xi) |\xi|^{p-1}$$

O
$$\phi(p-1)|\rho|^{p-2}z; \phi(p-1)|\xi|^{p-2}z$$

 \mathbf{O} v where, v is the solution of

$$\begin{cases} v_{xx} = \beta sign(z)|z|^{p-1} & x \in (0,1), \\ v(0) = v(1) = 0, \end{cases}$$

$$\begin{cases} 0 \le \psi \le 1, \\ \psi = 0 \text{ on } Q_0, \\ \psi = 1 \text{ on } (0, 1) \setminus Q_1, \end{cases} \qquad \begin{cases} 0 \le \phi \le 1, \\ \phi = 1 \text{ on } Q_1, \\ \phi = 0 \text{ on } (0, 1) \setminus Q_2, \end{cases} \qquad \begin{cases} 0 \le \beta \le 1, \\ \beta = 1 \text{ on } Q_2 \cap (0, 1), \\ \beta = 0 \text{ on } \mathbb{R} \setminus \omega. \end{cases}$$

Case 1 :

O Problem in the second multiplier:

$$(p-1)\phi|\rho|^{p-2}z$$
; $(p-1)\phi|\xi|^{p-2}z$

o Solution ?

Case 1 :

$$\phi (p-1)|\rho|^{p-2}z; \phi (p-1)|\xi|^{p-2}z$$

$$\int \phi (p-1)(|\rho|+1)^{p-2}z; \phi (p-1)(|\xi|+1)^{p-2}z$$

$$E_{p}(t) = \frac{1}{p} \int_{0}^{1} (|\rho|^{p} + |\xi|^{p}) dx.$$

$$\mathcal{E}_{p}(t) = \int_{0}^{1} (G(\rho) + G(\xi)) dx.$$

$$G(y) = \frac{1}{p} [(|y| + 1)^{p} - 1] - |y|.$$

16

Case 1 < *p* < 2 :

Proposition 4.3 Fix $p \in (1,2)$ and suppose that Hypothesis $(\mathbf{H_1})$ is satisfied. Then there exist positive constants C and C_p such that, for every $(z_0, z_1) \in Y_p$ verifying

 $E_p(0) \le 1,\tag{105}$

we have the following energy estimate:

$$\forall \ 0 \le S \le T, \ \int_{S}^{T} \mathcal{E}_{p}(t) \, dt \le C \, C_{p} \mathcal{E}_{p}(S).$$
(106)

$$\mathcal{E}_{p}(t) \leq \mathcal{E}_{p}(0)e^{1-\gamma_{p}t} \leq e^{1-\gamma_{p}t},$$

$$\|S_{p}(t_{p})\|_{X_{p}} = \sup_{E_{p}(0)\leq 1} E_{p}(t)^{\frac{1}{p}} \leq \left(\frac{1}{2}\right)^{\frac{1}{p}} < 1,$$

$$\mathbb{I}_{E_{p}(t_{p})} \leq \frac{1}{2} \text{ if } t \geq t_{p}$$

$$\mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})}$$

$$\mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})}$$

$$\mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})} = \mathbb{I}_{E_{p}(t_{p})}$$

Case of a global constant damping

 $a(x) \equiv 2\alpha, \quad \forall \ x \in (0,1),$

Proposition 5.1 For p = 1 or $p = \infty$, the semi-group $(S(t))_{t\geq 0}$ is exponentially stable for a global constant damping if $\alpha \in (0, 2)$.

Idea of proof:
$$z(t,x) = e^{-\alpha t}v(t,x), x \in (0,1), t \ge 0,$$

$$\begin{cases} v_{tt} - v_{xx} = \alpha^2 v & \text{in } \mathbb{R}_+ \times (0, 1), \\ v(t, 0) = v(t, 1) = 0 & t \ge 0, \\ v(0, \cdot) = z_0, v_t(0, \cdot) = z_1 + \alpha z_0. \end{cases}$$

$$E_p(t) \le e^{-\alpha pt} \left(2^{p-1} + \frac{\alpha^p}{p^2} \right) V_p(t).$$

$$V_p(t) \le V_p(0) e^{\alpha^2 p K_p^{\frac{1}{p}} t}.$$

$$E_p(t)^{\frac{1}{p}} \le (2+\alpha)^2 e^{M_\alpha t} E_p(0)^{\frac{1}{p}},$$

$$M_{\alpha} := -\alpha + \alpha^2 K_p^{\frac{1}{p}} = -\alpha \left(1 - \frac{\alpha}{2p^{\frac{1}{p}}}\right).$$

Conclusion:

- **O** Generalizing the multiplier method in the *L*^{*p*} framework.
- **O** Exponential stability for 1 .
- **O** Conjecture for $p = 1, p = \infty$.

THANK YOU FOR YOUR ATTENTION ③