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Existing work about the stability of the damped
wave equation with internal damping: 

■ Case p=2 

– “A new method to obtain 
decay rate estimates for 
dissipative systems with 
localized damping”, Patrick 
Martinez (1999)

– “Exponential stability for the 
wave equation with weak 
nonmonotone damping”, 
Patrick Martinez, Judith 
Vancostenoble, (2000)
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■ Case p≠2 

– "𝑳𝒑-estimates of solutions to some 

nonlinear wave equations in one space 

dimension”, Alain Haraux (2009)

– “𝑳𝒑-asymptotic stability analysis of a 1D 

wave equation with a nonlinear 

damping”, Yacine Chitour, Swann Marx, 

and Christophe Prieur (2019) 

For extended references:

“On Some Recent Advances on 

Stabilization for Hyperbolic 

Equations”, Fatiha Alabau (2012)

For extended references:

“Lp-asymptotic stability of 1D 

damped wave equations with 

localized and linear damping”, 

Meryem Kafnemer and al. (2022)
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LINEAR PROBLEM

HILBERTIAN
FRAMEWORK



Control

Ω ⊂ ℝ𝑁 , 𝐶2 bounded

𝑧0, 𝑧1 ∈ 𝐻0
1 Ω × 𝐿2(Ω) , 

continuous function, satisfies:

𝑎 𝑥 ≥ 𝑎0 > 0 𝑜𝑛 𝜔 ⊂ Ω.

In our case, 𝑢 is a linear
damping given by:
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Case 𝑝 = 2 ∶

𝒖 = 𝒛𝒕



t                         + ∞

Different types of stability

Strong stabilization:  𝐸 𝑡 ⟶ 0 when 𝑡 ⟶ ∞

Exponential stability:  ∃𝐶, 𝛾 > 0, 𝐸 𝑡 ≤ 𝐶𝐸 0 𝑒−𝛾𝑡

Polynomial stability:  ∃𝐶, 𝛾 > 0, 𝐸 𝑡 ≤ 𝐶𝐸 0 𝑡−𝛾

To obtain exponential stability
results, geometrical conditions 
are imposed on the damping

domain 𝜔

Stabilizing feedback

(𝑃)
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Case 𝑝 = 2 ∶



Multipliers method:

𝑀 × ( )

Energy Estimate

𝐸′ 𝑡 = −න𝑎 𝑥 𝑧𝑡
2 𝑑𝑥

Using the multiplier 𝑧𝑡 ∶
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Exponential stability

𝑧𝑡 × ( )
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LINEAR PROBLEM

NON-HILBERTIAN
FRAMEWORK



Case 1 ≤ 𝑝 ≤ ∞ ∶
The study can be

done in one 
dimension only

Haraux (2009),  𝐸𝑝 is non-increasing with an explicit expression of 𝐸𝑝
′ along strong solutions.
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Haraux (2009)



Geometrical conditions:

ω0 1

ω0 1Geometrical conditions: unnecessary
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Well-posedness

The proof is based on D’Alembert formula and fixed point theory
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Exponential stability:
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Energy estimate

𝑀 × ( )



Exponential stability:
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Riemann coordinates:



Exponential stability:
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𝑀(𝜌) × ( 𝜌𝑡 − 𝜌𝑥 +
1

2
𝑎(𝑥)(𝜌 − 𝜉) ) = 0

𝑀(𝜉) × ( 𝜉𝑡 + 𝜉𝑥 −
1

2
𝑎(𝑥)(𝜌 − 𝜉) ) = 0



Case p≥2: Generalizing the multipliers
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𝜙 𝑝 − 1 𝜌 𝑝−2𝑧 ; 𝜙 𝑝 − 1 𝜉 𝑝−2𝑧

𝑥 𝜓 𝑠𝑖𝑔𝑛(𝜌) 𝜌 𝑝−1 ; 𝑥 𝜓 𝑠𝑖𝑔𝑛(𝜉) 𝜉 𝑝−1

𝑣 where, 𝑣 is the solution of 



Case 1 < 𝑝 < 2 :

Problem in the second multiplier:

Solution ?
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𝑝 − 1 𝜙 𝜌 𝑝−2𝑧 ; 𝑝 − 1 𝜙 𝜉 𝑝−2𝑧𝑝 − 1 𝜙 𝜌 𝑝−2𝑧 ; 𝑝 − 1 𝜙 𝜉 𝑝−2𝑧
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𝜙 𝑝 − 1 𝜌 𝑝−2𝑧 ; 𝜙 𝑝 − 1 𝜉 𝑝−2𝑧

𝜙 𝑝 − 1 ( 𝜌 + 1)𝑝−2𝑧 ; 𝜙 𝑝 − 1 ( 𝜉 + 1)𝑝−2𝑧

Case 1 < 𝑝 < 2 :



Case 1 < 𝑝 < 2 :
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Exponential stability



Case of a global constant damping
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Idea of proof:



Conclusion:

Conjecture for 𝑝 = 1, 𝑝 = ∞.

Generalizing the multiplier method in the 𝐿𝑝 framework.

Exponential stability for 1 < 𝑝 < ∞.
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